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ABSTRACT

Double layers (i.e., electric fields parallel to B) form along auroral field lines in the Earth's magnetosphere.
They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field

E with V • E 4: 0. Features which govern the formation of the double layers are: (1) the divergence of E, (2) the

conductivity of the ionosphere, and (3) the current-voltage characteristics of auroral magnetic field lines.

Astrophysical situations where V • E 4:0 is applied to a conducting plasma similar to the Earth's ionosphere are
potential candidates for the formation of double layers. The region with V • E 4_ 0 can be generated within, or along

field lines connected to, the conducting plasma. In addition to V. E, shear neutral flow in the conducting plasma can
also form double layers.

I. INTRODUCTION

Here I describe the large-scale, electrodynamical phenomena that give rise to the formation of double layers
in the Earth's magnetosphere. I point out what I believe are the important features which might be found in associa-

tion with other astrophysical objects, and which could produce double layers analogous to those associated with the
Earth.

In the laboratory, double layers form if one tries to drive a current through a plasma that is greater than that

which can be carried by the available charge particles in a plasma. The same situation occurs along auroral magnetic

field lines. When the magnetosphere-ionosphere system tries to drive a current with a density greater than can be

carried by the plasma available to flow along field lines, a field-aligned potential drop VII forms. This Vii accelerates
electrons toward the atmosphere, and the accelerated electrons form discrete auroral arcs.

In this discussion, I do not distinguish between double layers, where large VII'S occur across short distances,

and smoothly varying potentials, where VII'S are distributed over large distances along field lines. The overall
electrodynamics is the same for both situations.

II. CONDITIONS FOR DOUBLE LAYERS

Three critical features of the Earth's magnetosphere-ionosphere system are involved in the formation of

significant (>1 kV) VII'S along auroral magnetic field lines. These are listed in Figure 1.

First, it is necessary to drive a current with a non-zero divergence. In the magnetosphere, the large-scale,

convection electric E has V • E _: 0 across auroral field lines. This divergence in E maps along field lines to the
ionosphere.

_RECEDING PAGE BLANK NOT FILMED 265



Second, the ionosphere has a layer of high conductivity perpendicular to the magnetic field B. This con-

ductivity results from collisions between ionospheric particles and the neutral atmospheric particles. Thus, an elec-
tric field with V • E # 0 in the ionosphere drives Pedersen (parallel to E) currents Ip in the ionosphere with V • Ip ¢

0. This divergence in Ip must be balanced by field-aligned currents to maintain current continuity in the ionosphere.

Third, if the intensity of the required field-aligned current density Jtl exceeds that which can be carried by

plasma flowing along field lines with Vii = 0, then a VII ¢ 0 must form.

Any astrophysical situation where an electric field drives a current I perpendicular to B, with V • I :_ 0, has

the potential for forming VII'S along B. A layer with significant conductivity perpendicular to B would be an attrac-
tive candidate for having currents with V • I ¢ 0.

To determine whether a Vii will form, we must evaluate the Jll versus Vii characteristics of magnetic field lines

for jll's of the magnitude expected from V • I. Currents associated with aurora on the Earth typically have Jll -- 1-10
i_A/m 2. Two particle populations can contribute to this current: the ionospheric plasma moving up along field lines,

and magnetospheric plasma (from the plasmasheet) which precipitates into the atmosphere. Onlymagnetospheric

particles within the loss cone contribute to Jll, since particles outside the loss cone mirror above the atmosphere.

Downward jll's can result from ionospheric electrons moving upward and from the precipitation of magneto-
spheric ions. However, ionospheric electrons can generally supply ajl I> 10 I.LA/m2 to a downward jlI, so that Wll'Sdo

not generally form for downward jll'S.

On the other hand, the maximum Jll that can be carried by ionospheric ions is generally < 1 _A/m 2. Thus, the

precipitation of magnetospheric electrons must be considered for upward Jll'S. For typical parameters of plasmasheet

electrons, the maximum Jllthat can be supplied by the precipitation of magnetospheric electrons is - 1 txA/m 2 for V41

= 0. However, increasing VIIincreases jl Iby enhancing the flux of electrons in the loss cone. The relation between jl I

and VII along auroral field lines was obtained by Knight (1973), and is shown in Figure 2.

Figure 2 shows Jll versus VII for an electron density n = 1 cm -3 and an electron thermal energy Kth = 1 keV,
values which are reasonable for the plasmasheet. Results for other values of n and Kth can be obtained from the

normalizations given in the figure. Curves are shown for various values of the ratio between the magnetic field in the

ionosphere B_ and the magnetic field Bv_,at the top of the region where significant potential variation exists along

field lines. Satellite obsevations (Gorney et ai., 1981) indicate that B_/Bv,, _ 30 is reasonable. Notice from Figure 2

that upward jH's -- 1-10 IxA/m 2 require the existence of Wll'S -- 1-10 kV. Such Wll'S are of the magnitude observed
over auroras.

Figure 3 illustrates a way in which an E with _7• E _ 0 develops in the Earth's magnetosphere. Both open,

polar-cap field lines connected with the interplanetary field and closed, lower latitude field lines are shown. Solar

wind flow across the open polar cap field lines forms a dawn-to-dusk electric field across the open field line region,

and the electric field changes direction across the boundary between open and closed field lines. The boundary is
thus charged as indicated in the figure. Mapping the electric field to the ionosphere gives _7. Ip < 0 and upward jll'S

on the dusk side, and _7. It, > 0 and downward jll's on the dawn side. The magnitude of_7 • It, gives large enough Jll's

on the dusk side to require a VII > 0.

Similar situations as shown in Figure 3 should occur in the magnetospheres of other magnetized, solar

system planets, and could exist in association with other magnetized, astrophysical objects. Also, regions of V • E

0 can be formed by plasma sources, such as Io, that move across field lines within a magnetosphere.

Figure 4 shows that the observed change in E across the dusk auroral zone can account for the observed

magnitude of auroral Wll'S and precipitation intensities. The observations (Gurnett and Frank, 1973) were from a
low-altitude satellite. An electric field of 0.12 V/m was observed across the auroral region, and the equation for
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currentcontinuityin theionospherewassolved(Lyons,1980)for anelectricfieldof magnitude0.06V/moneach
sideof thereversal.Theresultingvaluesof VII and precipitating electron energy fluxes are shown in Figure 4 as a
function of latitudinal distance. These can be seen to compare well in magnitude with values obtained from electron

observations on the satellite. The auroral observations in Figure 4 have more structure than that obtained from the

simple solution to the current continuity equation. However, this type of structure, which is typical of discrete

auroral arcs, can be explained as a result of more detailed structure in the magnetospheric electric field (Lyons,
1981 ; Chiu et al., 1981).

So far, the discussion here has been under the assumption that the velocity Vn of neutrals in the conducting

layer is zero. Including Vn, Ip may be written as the difference between the electric field drift velocity VE and V,:

Ip = Ep (-V E -_- Vn) X B ,

where _p is the layer-integrated Pedersen conductivity. Since jt I = -V. Ip, the above relation shows that shears in Vn,

as well as shears in VE, can cause field-aligned currents within a conducting layer.

Generally, thermospheric neutral winds in the conducting region of the Earth's ionosphere are not sufficient-
ly large to generate Vil's. However, this is not necessarily always the case. Recently, Lyons and Walterscheid (1985)

proposed that neutral wind shear can drive waves of aurora (omega bands), with VII > 0, that occasionally occur on

the poleward boundary of the post-midnight, diffuse aurora. In addition it has been proposed the neutral winds in the

photosphere and lower chromosphere of the Sun can generate Vil's (e.g., Kan et al., 1983).

III. SUMMARY

Figure 5 summarizes conditions that might exist in other astrophysical objects and which could lead to the

formation of significant Vil's in a manner analogous to what occurs in the Earth's auroral zones. A conducting layer

carrying current I perpendicular to B with V • I 4:0 will force field-aligned currents. If the required field-aligned

current density Jll exceeds the maximum Jll that can be carried along field lines by the available plasma with VII = 0,

then a Vll > 0 will form.

Two processes can drive Pedersen currents with V- Ip 4:0 within a collisional, conducting layer. The first is

sheared plasma flow (i.e., V • E ¢: 0) applied anywhere along the magnetic field lines connected to the conducting
layer. In this case, the sheared plasma flow will map along field lines to the conducting layer. The second process is

a neutral flow with shear within the conducting layer. Such flow can drive divergent Pedersen currents without an
electric field being applied to the system.
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----- Observations (Gurnett and Frank, 1973)
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Figure 4. Comparison of the solution to the ionospheric current continuity equation (Lyons, !980)
with observations. The observations (Gurnett and Frank, 1973) were obtained over

the auroral zone from a low-altitude satellite near 1800 LT.
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V E V E

• CONVERGING Ip CAN BE DRIVEN BY:

1. SHEARED PLASMA FLOW V E APPLIED
ANYWHERE ALONG B

2. SHEARED NEUTRAL FLOW V n APPLIED
IN CONDUCTING LAYER

• IF JU > CRITICAL Jll, GET V u

Figure 5. Summary of conditions that could lead to the formation of significant VII'S in a
manner analogous to what occurs in the Earth's auroral zones.
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